鹿粪纤维素降解细菌的筛选及堆肥应用Screening of Cellulose Degradation Bacteria from Deer Manure and Composting Application
杨波;邬慧慧;荆焕松;李梦琪;顾晓莹;彭静娜;吕志远;苏柳玥;熊家军;
摘要(Abstract):
为解决鹿粪堆肥中纤维素难以降解的问题,提高鹿粪堆肥的发酵速度和发酵质量。通过羧甲基纤维素钠培养基和刚果红染色透明圈以及酶活测定的方法,筛选得到了纤维素降解能力较高的2株细菌A27和A36。A27的羧甲基纤维素酶(CMCase)活力和滤纸酶(FPA)活力分别为0.158 IU/mL和0.073 IU/mL。A36的CMCase活力和FPA活力分别为0.151 IU/mL和0.042 IU/mL。经鉴定A27和A36分别为枯草芽孢杆菌(Bacillus subtilis)和索诺拉沙漠芽孢杆菌(Bacillus sonorensis)。菌株拮抗试验表明:A27和A36之间没有明显的拮抗作用,并以1∶1比例混合发酵时的纤维素酶活力最高,CMCase活力和FPA活力分别为0.196 IU/mL和0.100 IU/mL。因此,将A27和A36以1∶1的比例构建复合菌剂应用于鹿粪堆肥中,构建K组(不接种菌剂)、S组(接种复合菌剂)、D组(接种市售菌剂)3个堆肥组,结果表明:接种A27和A36的复合剂能够促进堆肥升温,延长嗜热期,提高堆肥质量。
关键词(KeyWords): 鹿粪;好氧堆肥;纤维素降解菌;复合菌剂;堆肥质量
基金项目(Foundation): 国家重点研发计划项目(2018YFC1706602-05);; 国家自然科学基金项目(31972533)
作者(Authors): 杨波;邬慧慧;荆焕松;李梦琪;顾晓莹;彭静娜;吕志远;苏柳玥;熊家军;
DOI: 10.13326/j.jea.2022.1697
参考文献(References):
- [1] Zhao L P,Han H S,Wang Q K,et al.Improvement of antler production and some reproduction traitsin hybridization between Tian Shan Wapiti and Northeast Sika deer[J].Small Ruminant Research,2017,154:92-97.
- [2] 李光玉.疫情下中国梅花鹿产业的机遇与挑战[J].畜牧产业,2020 (7):52-54.
- [3] 李龙威.生物炭对鹿粪堆肥过程中重金属钝化及肥效的影响研究[D].长春:东北师范大学,2020.
- [4] Sadef Y,Nizami A S,Batool S A,et al.Waste-to-energy and recycling value for developing integrated solid waste management plan in Lahore[J].Energy Sources,Part B:Economics,Planning,and Policy,2016,11(7):569-579.
- [5] Zhang L L,Li L J,Sha G M,et al.Aerobic composting as an effective cow manure management strategy for reducing the dissemination of antibiotic resistance genes:an integrated meta-omics study[J].Journal of Hazardous Materials,2020,386:121895.
- [6] Chen Y R,Chen Y N,Li Y P,et al.Changes of heavy metal fractions during co-composting of agricultural waste and river sediment with inoculation of Phanerochaete chrysosporium[J].Journal of Hazardous Materials,2019,378:120757.
- [7] 王玥,刘中珊,刘奇,等.木耳菌糠和鸡粪混合堆肥改良盐碱土壤效果评价[J].中国农学通报,2020,36(26):77-82.
- [8] Hendricks C W,Doyle J D,Hugley B.A new solid medium for enumerating cellulose-utilizing bacteria in soil[J].Applied and Environmental Microbiology,1995,61(5):2016-2019.
- [9] Pandey B R,Ghimire S,Bhattarai S,et al.Isolation,growth,enzyme assay and identification via 16S rRNA full sequencing of cellulolytic microbes from Nepal for biofuel production[J].Renewable Energy,2019,132:515-526.
- [10] 刘杨,钟玮,费忠安,等.家蝇中肠细菌群落组成分析[J].应用与环境生物学报,2013,19(5):800-804.
- [11] 杨晓蕾,钱国良,范加勤,等.梨黑斑病菌拮抗细菌的筛选鉴定及其拮抗活性的研究[J].南京农业大学学报,2014,37(1):68-74.
- [12] Gou C L,Wang Y Q,Zhang X Q,et al.Inoculation with a psychrotrophic-thermophilic complex microbial agent accelerates onset and promotes maturity of dairy manure-rice straw composting under cold climate conditions[J].Bioresource Technology,2017,243:339-346.
- [13] Liu L,Wang S Q,Guo X P,et al.Succession and diversity of microorganisms and their association with physicochemical properties during green waste thermophilic composting[J].Waste Management,2018,73:101-112.
- [14] 张海艳,王文磊,韩锰.纤维素分解菌的筛选与鉴定[J].安徽农业科学,2020,48(15):1-3,8.
- [15] 李建树,孙丽坤,韩向敏,等.高温纤维素降解微生物的筛选、鉴定及其酶活力测定[J].甘肃农业大学学报,2020,55(3):29-37.
- [16] Ahmad R,Bashir S,Tabassum R.Evaluation of cellulases and xylanases production from Bacillus spp.isolated from buffalo digestive system[J].Kafkas üniversitesi Veteriner Fakültesi Dergisi,2019,25(1):29-36.
- [17] 毛婷,魏亚琴,杨红建,等.牦牛粪便中纤维素降解菌的筛选及产酶优化[J].中国农业大学学报,2019,24(11):106-116.
- [18] 霍光明,张李阳,朱枳穆,等.响应面法优化链霉菌S10A09发酵产纤维素酶条件[J].生物加工过程,2019,17(2):138-143.
- [19] 李海铭,张萌,李兴,等.秸秆微生物降解的研究进展[J].山东化工,2021,50(9):70-72,74.
- [20] 吴庆珊,周桂雄,方正,等.一种纤维素降解复合菌剂在羊粪堆肥中的应用效果评价[J].云南大学学报(自然科学版),2021,43(3):608-618.
- [21] 成福,王万能.复合纤维素酶菌剂降解禽畜粪便动力学过程研究[J].农业与技术,2020,40(15):10-12.
- [22] 江高飞,杨天杰,郑海平,等.降解玉米秸秆真菌复合菌系的构建及其降解效果评价[J].植物营养与肥料学报,2021,27(2):284-292.
- [23] 黄颖婕,周尚峰,刘震夷,等.牛粪堆肥纤维素高效降解菌的筛选和应用[J].湖南农业科学,2018 (2):50-53.
- [24] 邵栓,朱群,李慧娟,等.复合微生物菌剂在猪粪无害化处理中的应用[J].畜牧与兽医,2021,53(4):42-47.
- [25] Li M X,He X S,Tang J,et al.Influence of moisture content on chicken manure stabilization during microbial agent-enhanced composting[J].Chemosphere,2021,264:128549.